The 19th Economic International Conference Challenges and Opportunities for a Sustainable Development Stefan cel Mare University of Suceava, 2023

Creating the General Convergence Index (GCI) and using it to rank Convergence Potential in the EU

Floroiu Otilia

Challenges and Opportunities for a Sustainable Development

Stefan cel Mare University of Suceava, 2023

Introduction

- Only the minimum nominal convergence criteria have been regulated thus far. This raises two significant questions:
 - How can aspiring countries to EMU improve their levels of convergence? and
 - How can this level be optimally quantified?
- Determining the optimal moment for joining the EMU is closely related to the analysis of the level of convergence between EU member states and eurozone member states.
- For this reason, we have proposed a classification of EU member states based on their level of convergence, and we found it necessary to create a convergence index that considers nominal, real, and social aspects.

Challenges and Opportunities for a Sustainable Development

Stefan cel Mare University of Suceava, 2023

Literature Review

- As per Ridao-Cano and Bodewig (2018), the convergence process consists of two distinct aspects: the quantitative aspect and the qualitative aspect.
- Bucur and Stangaciu (2015) analyze the level of convergence in the EU, while focusing on the economic and human development aspects.
- Aursulesei (2020), used the convergence index developed by Dulgheriu (2016), and Principal Component Analysis (PCA), and developed a nominal and real convergence index called IACNR.

Challenges and Opportunities for a Sustainable Development

GCI – Time baseline and variables

- The parameters were analyzed over a period of 10 years, from 2012 to 2021.
- As Estonia does not have all the yearly data for the long-term interest rate indicator, we decided to study the remaining 26 European countries: Belgium, Bulgaria, Czech Republic, Denmark, Germany, Ireland, Greece, Spain, France, Croatia, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Austria, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, and Sweden.

Challenges and Opportunities for a Sustainable Development

GCI – Time baseline and variables

- The indicators we considered when creating the GCI were:
 - 1. The Harmonized Index of Consumer Prices (HICP) inflation rate (%)
 - 2. Budget deficit (% of GDP)
 - 3. Public debt (% of GDP)
 - 4. Long-term interest rate (%)
 - 5. GDP per capita in purchasing power standards (PPS),
 - 6. Real effective exchange rate based on HICP (3 year % variation),
 - 7. Unemployment rate (% of total labor force),
 - 8. Small and medium-sized enterprises (SME) productivity (mil. EUR),
 - Innovation expressed as government expenditure on R&D (EUR per capita),
 10.Poverty risk rate (% of total population),
 - 11. Tertiary education for the 15-64 age group (% of total population), and
 - 12. Youth unemployment rate for the 15-24 age group (% of the labor force).

Challenges and Opportunities for a Sustainable Development

GCI – MCDM methods used

Stefan cel Mare University of Suceava, 2023

• Multicriteria decision-making (MCDM) methods are used in decision-making when there are multiple conflicting criteria, such as: selecting the factors that are part of the general convergence index and determining their importance to the subject of interest.

• To evaluate the convergence potential of European countries, it was imperative to assess the impact of each selected indicator on the convergence index, rank the countries, and compare the outcomes obtained using four distinct techniques. To accomplish this, we employed the following multi-criteria data analysis methods:

- Principal component analysis (PCA),
- Analytic hierarchy process (AHP),
- The critical method for weight determination, and
- The entropy method for weight determination.

Challenges and Opportunities for a Sustainable Development

Stefan cel Mare University of Suceava, 2023

GCI – methods used

• The principal component analysis (PCA): The main stages of principal component analysis include standardization or normalization of the initial dataset, calculation of the correlation matrix, eigenvalues and eigenvectors, determination of the influence of each factor on the created index, and selection of the principal components.

0.638197

-0.292010

0.670296

Date: 10/26/22 Time: 14:46 Sample: 1 26 Included observations: 26 Computed using: Ordinary correlations Extracting 12 of 12 possible components

TINERET SOMAJ

-0.533309

-0.670636

Extraording TE of TE poo		51110										
Eigenvalues: (Sum = 1	2, Average = 1)										
				Cumulative	Cumulative							
Number	Value	Difference	Proportion	Value	Proportion							
1	5.051704	2.757975	0.4210	5.051704	0.4210							
2	2.293729	1.036099	0.1911	7.345433	0.6121							
3	1.257630	0.325704	0.1048	8,603063	0.7169							
4	0.931926	0.048123	0.0777	9.534990	0.7946							
5	0.883804	0.382631	0.0737	10.41879	0.8682							
6	0.501172	0.103737	0.0418	10.91997	0.9100							
7	0.397436	0.127946	0.0331	11.31740	0.9431							
8	0.269490	0.091088	0.0225	11.58689	0.9656							
9	0.178402	0.035434	0.0149	11.76529	0.9804							
10	0.142967	0.082139	0.0119	11.90826	0.9924							
11	0.060828	0.029916	0.0051	11.96909	0.9974							
12	0.030912		0.0026	12.00000	1.0000							
Eigenvectors (loadings	s):											
Variable	PC 1	PC 2	PC 3	PC 4	PC 5	PC 6	PC 7	PC 8	PC 9	PC 10	PC 11	PC 12
RATA INFLATIEI	-0.214552	-0.455006	0.014443	-0.030634	0.097159	0.656511	-0.313412	-0.109395	0.331316	0.032473	0.288577	-0.032349
DEFICIT BUGETAR	-0.351460	0.061673	-0.040903	0.311045	-0.421587	-0.212786	0.361112	-0.033141	0.328467	0.253668	0.483931	0.115367
DATORIA PUBLICA	0.326911	0.228199	0.287229	-0.308779	0.190913	0.087112	0.228390	0.442175	0.277010	-0.300221	0.437536	0.114838
RDOBTL	0.374345	-0.085451	-0.104539	-0.092611	-0.324232	0.328477	0.292004	0.265785	0.257638	0.463723	-0.426980	0.019981
PIBPERCAPITAPPS	-0.265087	0.422565	0.083187	0.114515	-0.032471	0.506237	0.094917	0.254386	-0.563095	0.197741	0.143009	-0.153144
CSREAL	-0.243113	-0.168002	0.131067	0.223923	0.744792	-0.082303	0.368909	0.134100	0.096847	0.290231	-0.176316	0.071312
RATA SOMAJ	0.380547	0.246727	-0.063966	0.163178	0.205854	-0.004860	0.012185	-0.341126	0.179306	0.215500	0.210213	-0.694187
PRODUCTIVIMM	0.016491	-0.008478	0.837849	0.116880	-0.158541	-0.160623	-0.369002	0.074926	0.059768	0.275723	-0.090481	-0.059255
INOVARE	-0.278334	0.419635	0.219565	0.050542	-0.055132	0.263403	0.205085	-0.333286	0.371992	-0.394094	-0.419727	-0.015958
SARACIE	0.244448	-0.104509	-0.068237	0.807748	-0.048410	0.092480	-0.095680	0.326232	0.032919	-0.374530	-0.065151	-0.011468
ED TERTIARA	-0.140098	0.492576	-0.341086	0.013698	0.165546	-0.085294	-0.548804	0.270664	0.346782	0.233088	-0.068155	0.181262
TINERET SOMAJ	0.390030	0.180029	0.072831	0.199123	0.123214	0.184788	-0.011332	-0.474692	-0.131643	0.183615	0.140744	0.651821
Ordinary correlations:												
RAT		DEFICIT B	DATORIA	RDOBTL	PIBPERCA	CSREALR	ATA SOMAJ F	PRODUCT	INOVARE	SARACIE	ED TERTI	TINERET
RATA_INFLATIEI	1.000000											
DEFICIT BUGETAR	0.185698	1.000000										
DATORIA_PUBLICA	-0.552337	-0.685383	1.000000									
RDOBTL	-0.269914	-0.553464	0.561721	1.000000								
PIBPERCAPITAPPS	-0.040705	0.506646	-0.197003	-0.499645	1.000000							
CSREAL	0.425700	0.260321	-0.347088	-0.609615	0.177793	1.000000						
RATA_SOMAJ	-0.635178	-0.639510	0.685260	0.599444	-0.296615	-0.405514	1.000000					
PRODUCTIVIMM	-0.016568	-0.006497	0.221989	-0.082521	0.026125	0.009695	-0.049330	1.000000				
INOVARE	-0.054720	0.576848	-0.170072	-0.580879	0.809037	0.192274	-0.291875	0.145999	1.000000			
SARACIE	-0.152527	-0.233224	0.133894	0.441739	-0.320381	-0.154847	0.488549	0.044402	-0.422676	1.000000		
ED TERTIARA	-0.302089	0.233583	-0.088082	-0.390331	0.572581	-0.012520	0.055257	-0.296613	0.500729	-0.228109	1.000000	

-0.434886

0.930911

0.091226

-0.308528

-0.122315

1.000000

0.532723

Challenges and Opportunities for a Sustainable Development

GCI – methods used

Stefan cel Mare University of Suceava, 2023

• The Analytic Hierarchy Process (AHP) stages: - comparing pairs of decision alternatives with respect to the chosen criteria to determine a hierarchy based on the criterion, - comparing pairs of decision criteria to determine a relative hierarchy, and - determining the performance matrix and alternative scores using the hierarchies obtained in the previous stages.

From σ	-3.5	55	-2.7875		-2.025	-1.2625	5 -0.	5	0.5	1.26	25 2.	.025 2	2.7875
Το σ	-2.78	375	-2.025		-1.2625	-0.5	0.5	0.5 1.		5 2.02	25 2.	7875	3.55
Value	9		7		5 3		1	1 1/3		1/5		1/7	1/9
Importance	Extrem	Extremely Very strong		ng	Strong Moderate		te Equ	Equal		ŀ	Reciproca	1	
Tara	Rata inflatie i	Deficit bugetar	Datoria publica	Rdob	PIB p TL capit PPS		Rata somajuli		roductiv. IMM	Inovare	Saracie	Educatie tertiara	Somaj tineri
BELGIA	0.020	0.021	0.017	0.04	9 0.02	3 0.031	0.042		0.047	0.022	0.038	0.015	0.033
BULGARIA	0.051	0.063	0.080	0.03	4 0.07	4 0.042	0.031		0.045	0.062	0.011	0.048	0.031
REPUBLICA CEI	0.012	0.052	0.060	0.04	5 0.04	5 0.037	0.070		0.043	0.048	0.118	0.066	0.063
DANEMARCA	0.058	0.086	0.058	0.05	9 0.01	8 0.029	0.051		0.025	0.008	0.069	0.020	0.060
GERMANIA	0.025	0.106	0.033	0.06	4 0.02	0.067	0.075		0.015	0.012	0.033	0.044	0.090
IRLANDA	0.073	0.026	0.025	0.04	5 0.01	0.009	0.031		0.045	0.035	0.037	0.009	0.035
GRECIA	0.129	0.011	0.006	0.00	5 0.05	2 0.007	0.005		0.047	0.048	0.013	0.038	0.006
SPANIA	0.049	0.006	0.017	0.03	0.04	5 0.047	0.006		0.042	0.043	0.011	0.016	0.007
FRANTA	0.040	0.012	0.019	0.05	3 0.02	8 0.060	0.026		0.030	0.023	0.052	0.020	0.027
CROATIA	0.040	0.023	0.028	0.01	9 0.05	8 0.032	0.017		0.043	0.051	0.015	0.074	0.013
IT ALIA	0.049	0.017	0.009	0.02	5 0.03	5 0.047	0.020		0.005	0.040	0.014	0.097	0.011
CIPRU	0.105	0.025	0.019	0.01	5 0.04	7 0.015	0.020		0.047	0.051	0.038	0.011	0.021
LETONIA	0.025	0.045	0.058	0.04	5 0.05	5 0.060	0.026		0.047	0.059	0.011	0.026	0.044
LITUANIA	0.014	0.057	0.058	0.04	5 0.05	0.022	0.031		0.047	0.054	0.012	0.015	0.048
LUXEMBOURG	0.025	0.069	0.080	0.05	9 0.00	5 0.045	0.058		0.047	0.007	0.030	0.011	0.041
UNGARIA	0.007	0.021	0.029	0.01	3 0.05	2 0.007	0.058		0.047	0.054	0.052	0.059	0.048
MALTA	0.031	0.048	0.043	0.04	2 0.03	9 0.056	0.064		0.047	0.054	0.030	0.052	0.067
TARILE DE JOS	0.021	0.057	0.043	0.05	5 0.01	8 0.049	0.051		0.011	0.016	0.069	0.019	0.063
AUSTRIA	0.016	0.034	0.024	0.05	5 0.02	0.020	0.058		0.043	0.015	0.047	0.034	0.073
POLONIA	0.017	0.026	0.046	0.01	3 0.05	2 0.032	0.051		0.015	0.054	0.033	0.039	0.044
PORTUGALIA	0.058	0.017	0.011	0.01	7 0.05	0.045	0.021		0.045	0.051	0.023	0.057	0.017
ROMANIA	0.009	0.018	0.058	0.01	0.05	8 0.045	0.043		0.042	0.062	0.008	0.109	0.023
SLOVENIA	0.040	0.014	0.032	0.03	l 0.04	7 0.056	0.042		0.047	0.051	0.059	0.030	0.049
SLOVACIA	0.021	0.022	0.044	0.04	3 0.05	2 0.042	0.026		0.047	0.051	0.069	0.066	0.024
FINLANDA	0.032	0.037	0.043	0.05	5 0.02	5 0.089	0.038		0.043	0.012	0.073	0.013	0.031
SUEDIA	0.033	0.086	0.058	0.05	5 0.02	0.011	0.040		0.042	0.012	0.033	0.013	0.031
CI	0.009	0.007	0.011	0.00	0.00	3 0.006	0.007		0.013	0.005	0.003	0.006	0.010
CR	0.005	0.004	0.006	0.00	0.00	2 0.004	0.004		0.008	0.003	0.002	0.003	0.006

Challenges and Opportunities for a Sustainable Development

Stefan cel Mare University of Suceava, 2023

GCI – methods used

- Criteria Importance Through Intercriteria Correlation (CRITIC) Method: the critical method presents numerous advantages in the decision-making process, as it can be used to determine weights in the absence of decision makers and can be successfully applied in a wide range of fields, such as: pharmaceutical industry (Diajoulaki et al.), water resources management (Yilmaz and Harmancioglu), national savings (Aznar Bellver et al.), logistics (Cakir and Percin).
- Entropy Weight Method (EWM): The main advantage of the entropy method is that it avoids human interference in determining the weight of the indicators, resulting in a high degree of objectivity. The EWM measures the value of dispersion in the decision-making process, meaning the higher the degree of dispersion, the greater the degree of differentiation and the more information can be obtained.

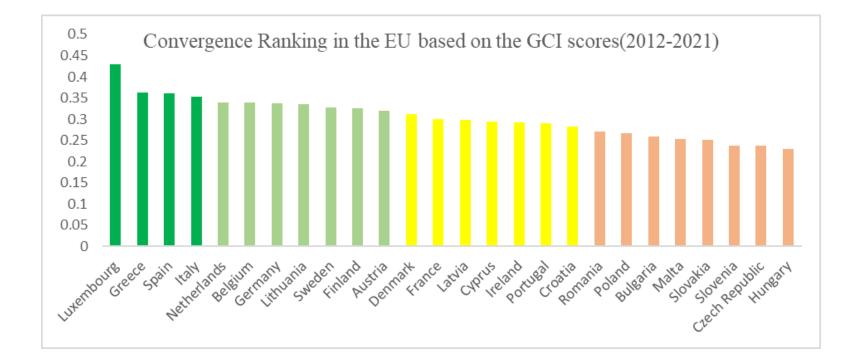
Challenges and Opportunities for a Sustainable Development

Stefan cel Mare University of Suceava, 2023

GCI - Results

IGC Weights (%)	РСА	CRITIC Method	Entropy Method	
HICP Inflation Rate	8.23	8.63	10.21	
Budget Deficit	7.39	8.54	10.25	
Public Debt	8.87	7.79	9.81	
Long-term interest rate	8.58	8.13	7.64	
GDP per capita PPS	8.99	6.56	9.27	
Real Exchange Rate	4.47	10.22	7.28	
Unemployment Rate	10.19	7.47	9.12	
SME Productivity	10.28	7.20	1.72	
Innovation	9.95	9.12	6.77	
Poverty Risk Rate	3.87	8.71	9.64	
Tertiary Education	9.32	9.63	8.05	
Youth Unemployment Rate	9.87	8.00	10.23	

Challenges and Opportunities for a Sustainable Development


GCI - Ranking of EU member states

Country	GCI PCA	GCI AHP	GCI Critic	GCI Entropy	AVERAGE	RANK
Belgium	0.358	0.123	0.438	0.436	0.339	6
Bulgaria	0.227	0.140	0.324	0.340	0.258	21
Czech Republic	0.237	0.129	0.295	0.289	0.237	25
Denmark	0.342	0.176	0.371	0.358	0.312	12
Germany	0.353	0.215	0.402	0.384	0.338	7
Ireland	0.328	0.109	0.355	0.377	0.292	16
Greece	0.399	0.065	0.465	0.519	0.362	2
Spain	0.368	0.116	0.468	0.493	0.361	3
France	0.317	0.137	0.372	0.371	0.299	13
Croatia	0.273	0.111	0.360	0.388	0.283	18
Italy	0.396	0.116	0.458	0.442	0.353	4
Cyprus	0.316	0.106	0.369	0.387	0.295	15
Latvia	0.277	0.147	0.377	0.388	0.297	14
Lithuania	0.328	0.135	0.439	0.443	0.336	8
Luxembourg	0.467	0.174	0.538	0.542	0.430	1
Hungary	0.247	0.087	0.274	0.307	0.229	26
Malta	0.234	0.155	0.308	0.314	0.253	22
Netherlands	0.381	0.163	0.422	0.391	0.339	5
Austria	0.345	0.124	0.412	0.401	0.320	11
Poland	0.283	0.116	0.336	0.333	0.267	20
Portugal	0.286	0.120	0.363	0.390	0.290	17
Romania	0.258	0.084	0.360	0.381	0.271	19
Slovenia	0.238	0.133	0.289	0.292	0.238	24
Slovakia	0.233	0.130	0.315	0.324	0.250	23
Finland	0.343	0.168	0.400	0.391	0.326	10
Sweden	0.347	0.163	0.394	0.403	0.327	9

Challenges and Opportunities for a Sustainable Development

Stefan cel Mare University of Suceava, 2023

GCI scores - Convergence Ranking in the EU

	Very high degree of convergence				
Legend	High degree of convergence				
Legenu	Medium degree of convergence				
	Low degree of convergence				

Challenges and Opportunities for a Sustainable Development

Stefan cel Mare University of Suceava, 2023

Conclusions

- By analyzing Romania's position in the convergence ranking at the EU level, we can observe that, although it belongs to the group of countries with a low degree of convergence, our country leans towards a medium potential.
- The current position can be improved not only by implementing measures aimed at consolidating the fiscal position and correlating the business cycle, but also by implementing programs that aim to improve social convergence. All three convergence components (nominal, real, and social) must be seen and addressed as a whole, as existing interdependencies cannot be ignored.
- Although the general level of convergence of a country is not a precondition for joining the euro area, its development and expansion depend on and are conditioned by the elimination of disparities among member states.

Challenges and Opportunities for a Sustainable Development

